Jumat, 29 November 2013

motor, stepper, and servo

MOTOR, STEPPER, AND SERVO


Motor


DC (Direct Current) Motors are two wire (power & ground), continuous rotation motors. When you supply power, a DC motor will start spinning until that power is removed. Most DC motors run at a high RPM (revolutions per minute), examples being computer cooling fans, or radio controlled car wheels!

The speed of DC motors is controlled using pulse width modulation (PWM), a technique of rapidly pulsing the power on and off. The percentage of time spent cycling the on/off ratio determines the speed of the motor, e.g. if the power is cycled at 50% (half on, half off), then the motor will spin at half the speed of 100% (fully on). Each pulse is so rapid that the motor appears to be continuously spinning with no stuttering!



Servo


Servo motors are generally an assembly of four things: a DC motor, a gearing set, a control circuit and a position-sensor (usually a potentiometer).

The position of servo motors can be controlled more precisely than those of standard DC motors, and they usually have three wires (power, ground & control). Power to servo motors is constantly applied, with the servo control circuit regulating the draw to drive the motor. Servo motors are designed for more specific tasks where position needs to be defined accurately such as controlling the rudder on a boat or moving a robotic arm or robot leg within a certain range.

Servo motors do not rotate freely like a standard DC motor. Instead the angle of rotation is limited to 180 Degrees (or so) back and forth. Servo motors receive a control signal that represents an output position and applies power to the DC motor until the shaft turns to the correct position, determined by the position sensor.

When a servo is commanded to move, it will move to the position and hold that position, even if external force pushes against it. The servo will resist from moving out of that position, with the maximum amount of resistive force the servo can exert being the torque rating of that servo.


Stepper

A stepper motor is essentially a servo motor that uses a different method of motorisation. Where a servo motor uses a continuous rotation DC motor and integrated controller circuit, stepper motors utilise multiple toothed electromagnets arranged around a central gear to define position.

The design of the stepper motor provides a constant holding torque without the need for the motor to be powered and, provided that the motor is used within its limits, positioning errors don't occur, since stepper motors have physically pre-defined stations.



Sumber https://www.modmypi.com/blog/whats-the-difference-between-dc-servo-stepper-motors

Jumat, 08 November 2013

Nose Sensor

What is Nose Sensor/Electronic Nose?

An electronic nose is a device intended to detect odors or flavors. Over the last decade, “electronic sensing” or “e-sensing” technologies have undergone important developments from a technical and commercial point of view. The expression “electronic sensing” refers to the capability of reproducing human senses using sensor arrays and pattern recognition systems.








How does it Works?

The electronic nose was developed in order to mimic human olfaction that functions as a non-separative mechanism: i.e. an odor / flavor is perceived as a global fingerprint. Essentially the instrument consists of head space sampling, sensor array, and pattern recognition modules, to generate signal pattern that are used for characterizing odors.
Electronic noses include three major parts: a sample delivery system, a detection system, a computing system.
The sample delivery system enables the generation of the headspace (volatile compounds) of a sample, which is the fraction analyzed. The system then injects this headspace into the detection system of the electronic nose. The sample delivery system is essential to guarantee constant operating conditions.
The detection system, which consists of a sensor set, is the "reactive" part of the instrument. When in contact with volatile compounds, the sensors react, which means they experience a change of electrical properties.
In most electronic noses, each sensor is sensitive to all volatile molecules but each in their specific way. However, in bio-electronic noses, receptor proteins which respond to specific odor molecules are used. Most electronic noses use sensor arrays that react to volatile compounds on contact: the adsorption of volatile compounds on the sensor surface causes a physical change of the sensor. A specific response is recorded by the electronic interface transforming the signal into a digital value. Recorded data are then computed based on statistical models.
Bio-electronic noses use olfactory receptors - proteins cloned from biological organisms, e.g. humans, that bind to specific odor molecules. One group has developed a bio-electronic nose that mimics the signaling systems used by the human nose to perceive odors at a very high sensitivity: femtomolar concentrations
The more commonly used sensors for electronic noses include
  • metal–oxide–semiconductor (MOSFET) devices - a transistor used for amplifying or switching electronic signals. This works on the principle that molecules entering the sensor area will be charged either positively or negatively, which should have a direct effect on the electric field inside the MOSFET. Thus, introducing each additional charged particle will directly affect the transistor in a unique way, producing a change in the MOSFET signal that can then be interpreted by pattern recognition computer systems. So essentially each detectable molecule will have its own unique signal for a computer system to interpret.
  • conducting polymers - organic polymers that conduct electricity.
  • polymer composites - similar in use to conducting polymers but formulated of non-conducting polymers with the addition of conducting material such as carbon black.
  • quartz crystal microbalance - a way of measuring mass per unit area by measuring the change in frequency of a quartz crystal resonator. This can be stored in a database and used for future reference.
  • surface acoustic wave (SAW) - a class of microelectromechanical systems (MEMS) which rely on the modulation of surface acoustic waves to sense a physical phenomenon.
Some devices combine multiple sensor types in a single device, for example polymer coated QCMs. The independent information leads to vastly more sensitive and efficient devices.
In recent years, other types of electronic noses have been developed that utilize mass spectrometry or ultra-fast gas chromatography as a detection system.
The computing system works to combine the responses of all of the sensors, which represents the input for the data treatment. This part of the instrument performs global fingerprint analysis and provides results and representations that can be easily interpreted. Moreover, the electronic nose results can be correlated to those obtained from other techniques (sensory panel, GC, GC/MS). Many of the data interpretation systems are used for the analysis of results. These systems include artificial neural network (ANN), fuzzy logic, pattern recognition modules.